ar X iv : h ep - t h / 04 03 11 6 v 1 1 0 M ar 2 00 4 D - branes and complex curves in c = 1 string theory

نویسنده

  • Sergei Alexandrov
چکیده

We give a geometric interpretation for D-branes in the c = 1 string theory. The geometric description is provided by complex curves which arise in both CFT and matrix model formulations. On the CFT side the complex curve appears from the partition function on the disk with Neumann boundary conditions on the Liouville field (FZZ brane). In the matrix model formulation the curve is associated with the profile of the Fermi sea of free fermions. These two curves are not the same. The latter can be seen as a certain reduction of the former. In particular, it describes only (m, 1) ZZ branes, whereas the curve coming from the FZZ partition function encompasses all (m,n) branes. In fact, one can construct a set of reductions, one for each fixed n. But only the first one has a physical interpretation in the corresponding matrix model. Since in the linear dilaton background the singularities associated with the ZZ branes degenerate, we study the c = 1 matrix model perturbed by a tachyon potential where the degeneracy disappears. From the curve of the perturbed model we give a prediction how D-branes flow with the perturbation and derive the two-point bulk correlation function on the disk with the FZZ boundary conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 04 03 11 6 v 3 3 0 Ju n 20 04 D - branes and complex curves in c = 1 string theory Sergei Alexandrov

We give a geometric interpretation for D-branes in the c = 1 string theory. The geometric description is provided by complex curves which arise in both CFT and matrix model formulations. On the CFT side the complex curve appears from the partition function on the disk with Neumann boundary conditions on the Liouville field (FZZ brane). In the matrix model formulation the curve is associated wit...

متن کامل

ar X iv : h ep - t h / 02 04 19 9 v 1 2 4 A pr 2 00 2 HOLONOMY ON D - BRANES

This paper shows how to construct anomaly free world sheet actions in string theory with D-branes. Our method is to use Deligne cohomology and bundle gerbe theory to define geometric objects which are naturally associated to D-branes and connections on them. The holonomy of these connections can be used to cancel global anomalies in the world sheet action.

متن کامل

ar X iv : h ep - t h / 06 03 15 5 v 1 2 0 M ar 2 00 6 Quantum Field Theory : Where We Are

We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory.

متن کامل

ar X iv : h ep - t h / 01 03 02 4 v 2 6 M ar 2 00 1 hep - th / 0103024 Making Non - Associative Algebra Associative Pei

Based on results about open string correlation functions, a nonassociative algebra was proposed in a recent paper for D-branes in a background with nonvanishing H. We show that our associative algebra obtained by quantizing the endpoints of an open string in an earlier work can also be used to reproduce the same correlation functions. The novelty of this algebra is that functions on the D-brane...

متن کامل

ar X iv : h ep - t h / 04 09 30 6 v 1 2 9 Se p 20 04 Minimal String Theory ⋆

We summarize recent progress in the understanding of minimal string theory, focusing on the worldsheet description of physical operators and D-branes. We review how a geometric interpretation of minimal string theory emerges naturally from the study of the D-branes. This simple geometric picture ties together many otherwise unrelated features of minimal string theory, and it leads directly to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009